Contents lists available at ScienceDirect

Resuscitation

journal homepage: www.elsevier.com/locate/resuscitation

Joyce Yeung^{a,b}, Reylon Meeks^c, Dana Edelson^d, Fang Gao^{a,b}, Jasmeet Soar^e, Gavin D. Perkins^{a,b,*}

^a University of Warwick, The Medical School, Warwick CV4 7AL, UK

^b Academic Department of Critical Care, Anaesthesia and Pain, Heart of England NHS Foundation Trust, Birmingham B9 5SS, UK

^c Blank Children's Hospital, Des Moines, IA 50309, USA

^d Section of Hospital Medicine, University of Chicago Medical Center, Chicago, IL 60637, USA

e Department of Anaesthetics & Intensive Care, Southmead Hospital, North Bristol NHS Trust, Bristol BS10 5NB, UK

ARTICLE INFO

Article history: Received 21 January 2009 Received in revised form 13 April 2009 Accepted 14 April 2009

Keywords: Advanced life support Basic life support Feedback Prompt Training

ABSTRACT

Objectives: In lay persons and health care providers performing cardiopulmonary resuscitation (CPR), does the use of CPR feedback/prompt devices when compared to no device improve CPR skill acquisition, retention, and real life performance?

Methods: The Cochrane database of systematic reviews; Medline (1950–Dec 2008); EmBASE (1988–Dec 2008) and Psychinfo (1988–Dec 2008) were searched using ("Prompt\$" or "Feedback" as text words) AND ("Cardiopulmonary Resuscitation" [Mesh] OR "Heart Arrest" [Mesh]). Inclusion criteria were articles describing the effect of audio or visual feedback/prompts on CPR skill acquisition, retention or performance.

Results: 509 papers were identified of which 33 were relevant. There were no randomised controlled studies in humans (LOE 1). Two non-randomised cross-over studies (LOE 2) and four with retrospective controls (LOE 3) in humans and 20 animal/manikin (LOE 5) studies contained data supporting the use of feedback/prompt devices. Two LOE 5 studies were neutral. Six LOE 5 manikin studies provided opposing evidence.

Conclusions: There is good evidence supporting the use of CPR feedback/prompt devices during CPR training to improve CPR skill acquisition and retention. Their use in clinical practice as part of an overall strategy to improve the quality of CPR may be beneficial. The accuracy of devices to measure compression depth should be calibrated to take account of the stiffness of the support surface upon which CPR is being performed (e.g. floor/mattress). Further studies are needed to determine if these devices improve patient outcomes.

© 2009 Elsevier Ireland Ltd. All rights reserved.

1. Background

Survival from cardiac arrest remains poor^{1,2} despite significant advances in the science of resuscitation over the last decade.^{3,4} One explanation for advances in science not achieving their full therapeutic potential may be a failure to optimally implement evidence based guidelines into practice.^{5,6} A number of studies have shown that the quality of CPR during training and in clinical practice is often sub-optimal, with inadequate compression depth, interruptions in chest compression, prolonged pre- and post-shock pauses and hyperventilation occurring frequently.^{7–10}

E-mail address: g.d.perkins@warwick.ac.uk (G.D. Perkins).

A number of devices have been developed which provide guidance during CPR. These have been used in both training and clinical settings. The devices range in complexity from a simple metronome, which guides compression rate to more complex devices that monitor and provide combined audiovisual feedback about actual CPR performance. The Skillmeter Anne (Laerdal, Orpington, UK) provides real time visual feedback and post-event summary feedback via a monitor screen.^{11,12} Variables measured are chest compression depth and rate, ratio of chest compressions to ventilations, hand position, ventilation volume and inflation rate. The voice advisory manikin (VAM) (Laerdal, Orpington, UK) uses sensors from a manikin to provide real time visual feedback on compression rate and depth, no-flow duration, ventilation rate, and inflation rate.13 This is supplemented by verbal instructions advising corrective action if the quality of CPR deviates beyond set parameters. The Q-CPR system (Philips Medical, Andover, MA) is designed for use during actual resuscitations. Information on the quality of CPR is obtained via defibrillator pads and an accelerometer placed on

Review

^{*} A Spanish translated version of the summary of this article appears as Appendix in the final online version at doi:10.1016/j.resuscitation.2009.04.012.

 $[\]ast~$ Corresponding author at: University of Warwick, The Medical School, Warwick CV4 7AL, UK.

^{0300-9572/\$-} see front matter @ 2009 Elsevier Ireland Ltd. All rights reserved. doi:10.1016/j.resuscitation.2009.04.012

the victims chest.¹⁴ It uses a similar system of audiovisual prompts to the VAM system. The PAR (public access resuscitator, O-two Medical Technologies, Ontario, Canada) delivers positive pressure ventilation (2 breaths) via a face mask followed by an audible tone indicating when chest compressions should be delivered.¹⁵ Pressure sensing devices CPREzy (Allied Health, UK)¹⁶ and CPRplus (Kelly medical¹⁷) combine a pressure sensing monitor which is placed on the victims chest during CPR with a metronome. These devices provide guidance on compression force, depth and rate, as well as release of compressions.

The aim of this study is to conduct a systematic review of the published literature on the use of CPR feedback/prompt devices during training and actual resuscitation attempts. To date, no head to head comparisons of different devices have taken place.

2. Methods

The review was conducted in accordance with the International Liaison Committee on Resuscitation (ILCOR) 2010 evidence evaluation process. Expert review of the search strategy and findings were conducted by the worksheet evaluation experts.

2.1. PICO question

This review sought to identify evidence to address the PICO (Patient/population, Intervention, Comparator, Outcome) question¹⁸: in lay persons and health care providers (HCPs) performing CPR (P), does the use of a CPR feedback/prompt device (I), when compared to no device (C), improve CPR skill acquisition, retention, and real life performance (O)?

2.2. Search strategy

The Cochrane database of systematic reviews was searched using the terms resuscitation and basic life support. The electronic databases Medline (1950–Dec 2008); EmBASE (1988–Dec 2008) and Psychinfo (1988–Dec 2008) were searched using OVID and the search terms ("Prompt\$" or "Feedback" as text words) AND ("Cardiopulmonary Resuscitation" [Mesh] OR "Heart Arrest" [Mesh]). The American Heart Association (AHA) Resuscitation Endnote library, which contains over 15,000 cardiac arrest related references, was searched using the terms "feedback" or "prompt\$" in abstracts.

Articles describing the effect of audio or visual feedback on CPR skill acquisition, retention or performance were eligible for inclusion. The titles of articles were reviewed for relevance independently by two reviewers (GDP/JY). Articles where the content was clearly unrelated were discarded. The abstracts of remaining articles were then reviewed and relevant studies identified for detailed review of the full manuscript. Where disagreement existed between reviewers at the title and abstract screening stage, articles were included for detailed review. Finally, the reference lists of narrative reviews were examined to identify any additional articles not captured by the main search strategy.

2.3. Evidence appraisal

Studies were reviewed in detail and classified by level of evidence (LOE) (Table 1) and quality (rated poor, fair or good) according to agreed definitions.^{18,19} Manikin studies were classified as level of evidence 5 irrespective of their study design. Higher quality evidence studies undertaken on manikins (e.g. randomised controlled trials) were classified as good. Lower quality of evidence manikin studies were rated as fair or poor. Studies were further classified according to whether they were supportive, neutral or

Table 1

ILCOR levels of evidence for therapeutic interventions.

LOE 1: Randomised controlled trials (or meta-analyses of RCTs) LOE 2: Studies using concurrent controls without true randomisation (e.g. "pseudo"-randomised) (or meta-analyses of such studies)

LOE 3: Studies using retrospective controls

LOE 4: Studies without a control group (e.g. case series) LOE 5: Studies not directly related to the specific patient/population (e.g. different

patient/population, animal models, mechanical models etc.)

opposing regarding the benefits of the use of CPR feedback/prompt devices.

2.4. Data presentation

Numerical data are summarised directly from the respective papers. Parametric data are presented as mean (standard deviation) and non-parametric as median (interquartile range). Proportions are presented as a percentage. A *P* value of <0.05 is considered significant.

3. Results

This search identified 509 papers. After the removal of duplicates, 350 titles were reviewed for relevance. From this 36 titles appeared relevant to the research question leading to detailed review of abstracts. Eight further articles were discarded at this phase leaving 28 articles for full review. From the review of reference lists and review articles a further 5 studies were identified. There are no published randomised controlled trials (LOE 1) in human cardiac arrests that address this question. Two nonrandomised cross-over studies in humans (LOE 2), four studies with retrospective controls in humans (LOE 3) and 20 animal/manikin (LOE 5) studies contained data supporting the use of feedback/prompt devices. Two LOE 5 studies were neutral. Six LOE 5 manikin studies provided opposing evidence. The level of evidence and quality of papers are summarised in Table 2.

3.1. Use during training—impact on skill acquisition

The impact of CPR feedback/prompt devices during training as an aid to skill acquisition has been examined in 8 manikin studies (Table 3). To qualify as a measure of skill acquisition, only studies which avoided using the feedback technology during skill testing were examined.

3.1.1. Manikin feedback (voice advisory manikin/skill meter manikin)

Wik¹³ conducted a randomised, controlled, cross-over study using an early version of the voice advisory manikin (VAM) system with 24 paramedic students that had previously been trained in BLS. Students were randomly allocated to perform CPR on a manikin for 3 min with or without feedback before crossing over to the other arm. The group which received feedback initially outperformed the no-feedback group during the first series of comparisons. The improvement was sustained after cross-over suggesting that feedback during the first series of comparisons had improved skill acquisition. Williamson found similar effects when CPR naïve lay persons used a similar system of audiovisual prompts incorporated in an automated external defibrillator (Heartstart plus).²⁰

The effect of 20 min of VAM-facilitated refresher training (no instructor) was examined amongst 35 basic life support (BLS) trained lay persons.²¹ Compared to baseline, the quality of CPR (chest compressions and ventilations) improved after VAM training (both with and without using feedback during testing). A further study using the VAM system²² compared VAM facilitated training (without instructor) to traditional instructor facilitated training in

Table 2

Summary of levels of evidence and quality of studies supporting, opposing or neutral to the use of CPR feedback/prompt devices.

Level of evidence	1 2	3	4	5
Evidence supporting clinical Good	question	Abella et al. ¹⁴ , Kramer-Johansen et al. ⁴²		Choa et al. ²⁶ Dine et al. ²⁷ Elding et al. ¹⁷ Ertl and Christ ²⁸ Handley and Handley ²⁹ Oh et al. ³² Milander et al. ⁴⁵ Perkins et al. ³³ Spooner et al. ¹¹ Sutton et al. ²² Wik et al. ¹³ Wik et al. ⁸ Williamson et al. ²⁰
Fair	Kern et al. ³⁹	Chiang et al. ⁴⁰ , Fletcher et al. ⁴¹		Beckers et al. ²⁵ Monsieurs et al. ¹⁵ Noordergraaf et al. ³¹ Thomas et al. ³⁴ Wik et al. ²¹
Poor	Berg et al. ³⁸			Boyle et al. ¹⁶ Lynch et al. ²⁴
Evidence neutral to clinical c Good Fair Poor	juestion			Williamson et al. ²⁰ France et al. ⁵⁶
Evidence opposing clinical q Good Fair Poor	uestion			Hostler et al. ³⁰ Isbye et al. ²³ Perkins et al. ⁹ van Berkom et al. ⁴⁴ Zanner et al. ³⁶ Perkins et al. ³³

a randomised controlled manikin study amongst adult lay persons attending a paediatric CPR course. This study demonstrated modest improvements in CPR skill acquisition and lower ventilation and compression error rates immediately after training. Isbye²³ compared training with VAM against instructor facilitated training for CPR and bag-valve-mask (BVM) skills amongst second year medical students. Skill acquisition was tested (using a score card) immediately after training and 3 months later. The instructor facilitated group performed significantly better than the VAM group in the total score, both immediately after training. This difference was primarily related to the poorer BVM skills in the VAM group. In contrast, Spooner et al.¹¹ conducted a randomised controlled trial with medical students to examine the effect of feedback from Skillmeter manikin during instructor led CPR training classes (teaching mouth to mouth ventilations as opposed to bag-valve-mask ventilation). This study showed that skill acquisition (compression depth and % correct chest compressions) was better in the group that trained with the Skillmeter manikin.

3.1.2. Metronome

The use of video self-instruction (with a CPR feedback device that provided feedback on compression depth and informed compression rate using a metronome) versus instructor delivered training showed improved CPR performance and improved ventilations.²⁴ The individual contribution of the CPR feedback device cannot be separated from the effect of video self-instruction.

Monsieurs et al.¹⁵ examined CPR skill performance amongst 152 nurses after randomly assigning staff to training using a pocket mask for ventilation or CAREvent Public Access Resuscitator (PAR, O-Two Medical Technologies, Ontario, Canada). The CAREvent[®] Public Access Resuscitator (PAR, O-Two Medical Technologies, Ontario, Canada) alternates two ventilations with 15 prompts for chest compressions. The group randomised to the PAR group achieved more chest compressions per minute than the group that had not been trained using PAR. There were other small improvements in compression rate and depth, total no flow time, tidal volume, and number of ventilations, although these were not judged as being clinically significant by the authors.

3.2. Use during training—impact on skill retention (skillmeter/VAM)

Three studies have looked at the effect that manikin feedback during initial training has on retention of CPR skills. Consistent with the findings in their skill acquisition study, Isbye²³ found lower CPR scores (due to the poor ventilation with a bag-valve-mask) amongst medical students trained with VAM as opposed to instructor facilitated training. In the follow-up arm of the study by Spooner et al.¹¹ participants randomised to skillmeter manikins demonstrated better chest compressions than the control arm 4-6 weeks after initial training. In a third study, Wik and colleagues randomised 35 lay persons to either one 20 min VAM-facilitated training session followed, 1 month later, by 10 additional 3 min sessions over 5 days, or the 20 min session alone (control) and tested their skill retention.²¹ After 6 months, both groups showed improvement over baseline in the percentage of correct inflations but only the group with additional subsequent training improved their chest compression rate, depth, duty-cycle and incomplete release from baseline, making it impossible to separate the effects of refresher training from the use of the VAM system.

Table 3

Summary of evidence examining the effect of CPR feedback/prompt devices during CPR skill acquisition (A) and skill retention (R) on manikins.

Chest compressions												
Study	Device	Device type	Group	Design	n	Compressions (feedback vs control)						
		51				Skill acquisition			Skill retention			
						Depth	Rate	% correct	Depth	Rate	% correct	
Beckers et al. ²⁵	CPREzy	Prompt/fee	edbac l st year medical students	Randomised cross-over	202	71.2% vs 34.1% (P<0.01)	93.7% vs 19.8% (P<0.01)	Х	71.9% vs 43.6% (P<0.01)	No effect	Х	
Isbye et al. ²³	VAM	Feedback	2nd year medical students	RCT	43	No effect	No effect	Х	No effect	No effect	Х	
Lynch et al. ²⁴	Metronome + VSI	Prompt	Lay person	RCT	285	No effect	No effect	No effect	Х	Х	Х	
Monsieurs et al. ¹⁵	CAREvent [®] Public access resuscitator	Prompt	Nurses	RCT	152	No effect	$95 \pm 14 \text{ vs } 99 \pm 4$ (P=0.047)	No effect	Х	Х	Х	
Spooner et al. ¹¹	Skillmeter	Feedback	Medical students	RCT	A = 98, R = 66	$\begin{array}{c} 40\pm 6\ mm\ vs\\ 37\pm 7\ mm\end{array}$	No effect	58% vs 40.4% (P=0.023)	No effect	No effect	43.1% vs 26.5% (P=0.039)	
Sutton et al. ²²	VAM	Feedback	Lay person (P-BLS)	RCT	50	Х	58.7 ± 7.9 vs 47.6 ± 10.5 (P<0.001)	Error rate $18.1 \pm 23.2\%$ vs $34.9 \pm 28.8\%$ (P<0.03)	Х	х	х	
Wik et al. ¹³	VAM	Feedback	Paramedic students	Before/after comparison	24	92% vs 32% (P=0.002)	No effect	X	х	Х	Х	
Wik et al. ²¹	VAM	Feedback	Lay person	RCT	A = 35, R = 30	91% \pm 8 vs 77% \pm 30 (P < 0.05)	No effect	х	$81\% \pm 19 \text{ vs}$ $46\% \pm 33$ (P<0.01)	$101 \pm 11 \text{ vs}$ 92 ± 17 (P < 0.05)	Х	
Ventilations												
Study	Device	Device type	Group	Design n		Ventilations (feed	back vs control)					
						Skill acquisition			Skill retention			
						Rate	Volume (ml)	% correct	Rate	Volume (ml)	% correct	
Beckers et al. ²⁵	CPREzy	Prompt/feed	baðl s t year medical students	Randomised cross-over	202	Х	Х	43.2% vs 30.8% (P<0.02)	Х	Х	No effect	
Isbye et al. ²³	VAM	Feedback	2nd year medical students	RCT	43	Total no 0 (0–4) vs 8 (6–8) (P<0.00 01)	0 (0–185) vs 543 (375–648) (P<0.000 1)	х	Total no 0 (0–1) vs 7.5 (4–8) (<i>P</i> =0.00 03)	0 (0-200) vs 450.5 (254.5-529.5) (P=0.0001)	х	
Lynch et al. ²⁴	Metronome + VSI	Prompt	Lay person	RCT	285	Х	х	58% vs 39% (P=0.014)	х	Х	Х	
Monsieurs et al. ¹⁵	CAREvent Public access resuscitator	Prompt	Nurses	RCT	152	$6 \pm 1 \text{ vs } 5 \pm 1$ (P<0.00 1)	$577 \pm 142 \text{ vs}$ 743 ± 279 (P=0.000 2)	Х	х	х	Х	
Spooner et al. ¹¹	Skillmeter	Feedback	Medical students	RCT	A = 98, R = 66	Х	No effect	No effect	х	No effect	No effect	
Sutton et al. ²²	VAM	Feedback	Lay person (P-BLS)	RCT	50	$7.8 \pm 1.2 \text{ vs}$ 6.4 ± 1.4 (P<0.00 1)	Х	Error rate 32.0 ± 19.7% vs 50.7 ± 24.1% (<i>P</i> <0.005)	Х	Х	х	
Wik et al. ¹³	VAM	Feedback	Parame dic students	Before/after comparison	24	Х	Х	64% vs 2% (P=0.002)	Х	Х	Х	
Wik et al. ²¹	VAM	Feedback	Lay person	Before/after comparison	A=35, R=30	No effect	x	71%±27 vs 58%±30 (P<0.01)	No effect	Х	$58\% \pm 27 \text{ vs}$ $18\% \pm 26$ (P < 0.01)	

Table 4

Summary of evidence examining the effect of CPR feedback/prompt devices during skill performance on manikins.

Study	Device	Device	Group	Design	п	Compressions (feedback	Other		
		type				Depth	Rate	% correct	
Beckers et al. ²⁵	CPR-Ezy	Prompt/feedbac	k 1st year medical students	Randomised cross-over	202	71.2% participants vs 34.1% (<i>P</i> < 0.01)	93.7% participants vs 19.8% (P<0.01)	Х	Х
Boyle et al. ¹⁶	CPR-Ezy	Prompt/feedbac	k Non-clinical hospital staff	Before/after comparison	32	Х	↓ variance	$42.1 \pm 5.2\%$ vs $12.8 \pm 3.7\%$ (P<0.001)	Improved hand position
Choa et al. ²⁶	Cell phone	Prompt	CPR naïve lay persons	RCT	44	No effect	% correct rate 72.4 ± 3.7% vs 57.6 ± 3.8% <i>P</i> =0.015	Х	Improved check list score; hand position and time to start CPR
Dine et al. ²⁷	Q-CPR	Feedback	Nurses	RCT	65	58%vs19% participants correct depth (<i>P</i> =0.002)	↓ variance	х	Х
	Q-CPR + debriefing					x	84% vs 45% participants correct (<i>P</i> =0.001)	64% vs 29% (<i>P</i> =0.005)	Х
Elding et al. ¹⁷	CPR-plus	Prompt/feedbac	k Nurses	Randomised cross-over	40	Х	Х	92 ± 1% vs 73 ± 10% (P=0.001)	Reduced number of compressions with excess pressure
Ertl and Christ ²⁸	Multimedia PDA	Prompt	BLS trained lay persons	RCT	101	х	х	73.5% vs 44.2% participants (<i>P</i> =0.003)	OSCE score $14.8 \pm 3.5 \text{ vs}$ 21.9 ± 2.7 (P < 0.01)
Handley and Handley ²⁹	VAM incorporated in AED	Feedback	Nurses	RCT	36	56.0% ± 32.2 vs 11.4 ± 20.7% P<0.00005	No effect	Х	Reduced shallow compressions
Hostler et al. ³⁰	VAM	Feedback	EMS staff	Randomised cross-over	114	No effect	х	No effect	x
Monsieurs et al. ¹⁵	CAREvent [®] Public access resuscitator	Prompt	Nurses	RCT	152	No effect	99±4 vs 95±14 (<i>P</i> =0.047)	No effect	Increased compression number and reduced no flow time
Noordergraaf et al. ³¹	CPR-Ezy	Prompt/feedbac	k Healthcare staff	? RCT (design unclear)	224	% participants too shallow 9.8% vs 43%, mean depth 45 ± 4 mm vs 40 ± 9 mm (P=0.0001)	No effect	94% vs 64% (<i>P</i> =0.0001)	Improved hand position
Oh et al. ³²	Metronome	Prompt	Medical/nursing students	RCT	80	Reduced compression depth 35.8 ± 8.2 mm vs 39.3 ± 9.5 mm (P < 0.01)	Improved rate 115.5 \pm 13.7 vs 100.1 \pm 3.2 (<i>P</i> <0.01)	Х	No effect on hand position
Perkins et al. ³³	CPR-Ezy	Prompt/feedbac	k Medical students	Randomised cross-over	20	42.9 ± 4.4 mm vs 34.2 ± 7.6 mm (P=0.0001)	No effect	Х	Higher proportion of compressions too low
Thomas et al. ³⁴	CPR-Plus	Prompt/feedbac	k Flight nurses	Before/after comparison	10	Х	Х	95.7 \pm 3.2% vs 33.4 \pm 12.1% <i>P</i> < 0.01	Х
Wik et al. ¹³	VAM	Feedback	Paramedic students	Before/after comparison	24	92% vs 32%	No effect	х	Increased duty cycle (44% vs 41%)

Table 4 (Continued)

Williamson et al.²⁰

Heartstart AED

Prompt

Untrained lay

persons

Study	Device	Device type	Group	Design	п	Compressions (feedback v	Other		
						Depth	Rate	% correct	
Wik et al. ²¹	VAM	Feedback	BLS trained lay persons	Before/after comparison	35	$91\% \pm 8 \text{ vs } 77\% \pm 30$ (P<0.05)	No effect	Х	Х
Wik et al. ⁸	VAM	Feedback	BLS trained lay persons	Before/after comparison 12 months after initial training	28	87±9 vs 32±33% P<0.008	No effect	Х	Х
Williamson et al. ²⁰	Heartstart AED	Prompt	Untrained lay persons	Randomised cross-over	24	No effect	$87.3 \pm 19.4 \text{ vs}$ 52.3 ± 31.4 (P=0.003)	No effect	х
Zanner et al. ³⁶	Cell phone	Prompt	Lay persons (mostly high school students)	RCT	119	x	X	X	No difference in scenario score Cell phone prompt group took longer to complete scenario
Ventilation									
Study	Device	Device type	Group	Design	п	Ventilation (feedback vs control)			Other
						Rate	Volume (ml)	% correct	
Beckers et al. ²⁵	CPR-Ezy	Prompt/fee	dback1st year medical students	Randomised cross-over	202	Х	Х	43.2% vs 30.8% (P<0.02)	Х
Choa et al. ²⁶	Cell phone	Prompt	CPR naïve lay persons	RCT	44	Х	No effect	X	Improved ventilation score
Ertl and Christ ²⁸	Multimedia PDA	Prompt	BLS trained lay persons	RCT	101	х	х	67.3% vs 42.3% participants (<i>P</i> =0.016)	OSCE score 21.9(2.7) vs 14.8(3.5), P<0.01
Handley and Handley ²⁹	VAM incorporated inAED	Feedback	Nurses	RCT	36	No effect	No effect	13.9 (SD 13.0) vs 5.6 (SD 3.1)%, P=0.004	x
Hostler et al. ³⁰	VAM	Feedback	EMS staff	Randomised cross-over	114	Х	Attenuated decline in correct ventilations	Decreased fraction of correct ventilations	х
Monsieurs et al. ¹⁵	CAREvent [®] Public access resuscitator	Prompt	Nurses	RCT	152	$6 \pm 1 \text{ vs } 5 \pm 1$ (P<0.001)	$577 \pm 142 \text{ vs}$ 743 ± 279 (P=0.0002)	Х	Х
Oh et al. ³²	Metronome	Prompt	Medical/nursing students	RCT	80	9.9 ± 0.3 vs 7.4 ± 1.8	x	х	х
Wik et al. ¹³	VAM	Feedback	Paramedic	Before/after	24	X	х	64% vs 2%	Х
Wik et al. ²¹	VAM	Feedback	BLS trained lay persons	Before/after comparison	35	No effect	х	$71\% \pm 27 \text{ vs}$ $58\% \pm 30$ (P < 0.01)	х
Wik et al. ⁸	VAM	Feedback	BLS trained lay persons	Before/after comparison 12 months after	28	No effect	х	62(25) vs 9(20)%, P<0.001	х

initial training

Randomised

cross-over

24

Х

Х

Х

51.3(SD 34.4)

vs 15.3(SD 32.8), *P* < 0.001

3.3. Use during skill performance-manikin studies

The use of feedback/prompt devices during CPR performance has been examined in 18 manikin studies.^{13,15–17,20,21,25–36} The studies are summarized in Table 4. Eight of these studies showed improved compression depth^{8,13,21,25,27,29,31,33} whilst one showed reduced depth.³² 6 studies showed improved compression rate^{15,20,25–27,32} (2 additional studies showed reduced variability in compression rate^{16,27}). Six studies showed improvement in percentage of correct compressions.^{15–17,27,31,34} Mixed effects were seen on correct hand positioning (3 showed improved positioning,^{16,26,31} 1 showed deterioration).³³ Fewer studies investigated the impact on ventilation (*n* = 11). Of these ten showed improved ventilation performance with feedback/prompt devices,^{13,15,20,21,25,26,28,29,32,37} and one showed mixed changes.³⁰

Three studies examined the utility of video/animations on mobile phones/PDAs to improve CPR performance. The studies gave mixed results. Two studies showed improved check list scores and quality of CPR^{26,28} or faster initiation of CPR²⁶ whilst the third study showed that multimedia phone CPR instruction required more time to complete tasks than dispatcher assisted CPR.³⁶

3.4. Use during skill performance-human studies

No randomised controlled trials of CPR feedback devices have been conducted in humans. None of the studies conducted to date provide definitive evidence of improved survival or other patient focused outcomes when CPR prompt devices are used.

3.4.1. Metronomes/sirens

Four studies have investigated the use of metronomes/sirens to assist with the timing of chest compressions and other interventions. Berg³⁸ and Kern³⁹ used metronomes in a cross-over trials during 6 paediatric and 23 adult resuscitation attempts respectively. Compared to baseline, chest compression rates and end-tidal CO₂ improved after activation of the metronomes. Chiang⁴⁰ used a metronome and siren to guide chest compression rate and duration of intubation attempts. Compared to historical controls (n = 17), the intervention group (n = 13) showed a significant improvement in the hands-off time per minute during CPR (12.7(5.3) s versus 16.9(7.9) s, P < 0.05) and the total hands-off time during CPR (164(94) s versus 273(153) s, *P*<0.05). The proportion of intubation attempts taking under 20s also improved (56.3% versus 10%, P < 0.05). Fletcher⁴¹ examined the effect of introducing a CPR education programme which included the use of metronomes to guide CPR in an ambulance service in the UK. The group found improvements in CPR and was associated with improved survival rates (3-7% P=0.02).

3.4.2. Q-CPR (Phillips/Laerdal Medical)

Abella conducted a prospective cohort study to examine the effect of introducing a prototype of the Q-CPR system during in-hospital resuscitation attempts.¹⁴ Compared to the baseline preintervention group (n = 55) compression and ventilation rates were less variable in the feedback group (n = 101). There were no significant improvements in the mean values of CPR variables, return of spontaneous circulation or survival to hospital discharge. By contrast, a similar study which introduced technology–CPR into the pre-hospital environment, found average compression depth increased from baseline (n = 176) of 34(9)mm to 38(6)mm (95% CI 2–6, P<0.001) in the feedback group (n = 108).⁴² The median percentage of compressions with adequate depth (38–51 mm) increased from 24% to 53% (P<0.001) with feedback and mean compression rate decreased from 121(18) min⁻¹ to 109(12) min⁻¹ (95%) Cl diff-16, -9, P=0.001). There were no changes in the mean number of ventilations per minute, no flow time or survival (2.9% versus 4.3% (OR 1.5 95% Cl; 0.8, 3), P=0.2).

3.5. Device risks and limitations

There may be some limitations to the use of CPR feedback/prompt devices. One LOE 5 manikin study⁴³ reports that chest compression devices may over estimate compression depth if CPR is being performed on a compressible surface such as a mattress on a bed. One LOE 5 reported harm to a single participant whose hand got stuck in moving parts of the CPR feedback device.³³ A further LOE 5 manikin study demonstrates that additional mechanical work is required from the CPR provider to compress the spring in one of the pressure sensing feedback devices.⁴⁴

4. Discussion

This review has identified evidence that the use of CPR feedback/prompt systems, either in addition to or in place of instructor facilitated training, can improve basic CPR skill acquisition and retention (as tested without use of the device). Automated feedback may be less effective than instructor feedback for more complex skills (e.g. bag-valve-mask ventilation).²³ The use of CPR feedback/prompt systems during CPR performance on manikins consistently improves the quality of CPR. The utility of video/animations on mobile devices (phone/PDA) appears promising. Care should be taken to ensure that these devices do not overly distract or delay the rescuer from performing CPR.

There is evidence from studies in humans that CPR feedback/prompt devices improve CPR performance. Evidence from three non-randomised cross-over studies (one animal⁴⁵ and two human studies^{38,39}) show that metronomes improve chest compression rate and end-tidal CO₂. Four before/after studies evaluating the introduction of CPR feedback/prompt devices in clinical practice showed improved CPR performance.^{40–42} There is a need to ensure that devices are safe, accurate, do not increase the work involved in CPR and can be used on a number of different support surfaces (e.g. floor, bed etc.).

There is a growing body of evidence demonstrating the link between the quality of CPR and patient outcomes. Studies in the early 1990s first identified the link between the quality of CPR and patient outcome, with better quality CPR being associated with improved survival.^{46,47} Chest compression depth and rate, interruptions in chest compressions (particularly before defibrillation) influence on patient outcome.^{12,42,48,49} The evidence in this review is largely supportive in demonstrating that CPR feedback/prompt devices are associated with improved quality of CPR. Whilst it may be intuitive to assume that this will lead to improvements in survival this cannot be assumed to be the case. Indeed, none of the studies to date have had sufficient power to show improved patient outcomes (return of spontaneous circulation, neurologically intact survival etc.) with CPR feedback/prompt devices. A number of examples exist where early evidence of efficacy^{50,51} failed to translate into improved patient outcomes (e.g. ACD-CPR⁵² and Autopulse chest compression device⁵³). A large, cluster randomised controlled clinical trial (ClinicalTrials.gov identifier: NCT00539539) is in progress as part of the Resuscitation Outcomes Consortium.^{54,55} The purpose of this study is to evaluate whether or not real-time feedback on CPR process variables will increase survival during pre-hospital resuscitation. A further study, supported by the UK National Institute of Health Research is about to commence recruitment examining the impact of feedback technology on patient outcomes during in-hospital CPR. Judgement on the ability of these devices to improve patient outcomes should be withheld until the

results of large randomised controlled trials such as these become available.

5. Authors conclusion and recommendation

This review provides good evidence supporting the use of CPR feedback/prompt devices during CPR training as a strategy to improve CPR skill acquisition and retention. The evidence suggests that the use of CPR feedback/prompt devices in clinical practice as part of an overall strategy to improve the quality of CPR may be beneficial. Further studies are required to assess if the improvements in quality of CPR brought about by these devices translate into improvements in patient focused outcomes. The accuracy of CPR feedback/prompt devices to measure compression depth should be calibrated to take account of the stiffness of the support surface upon which CPR is being performed (e.g. floor/mattress).

Disclaimer

This review includes information on resuscitation questions developed through the C2010 Consensus on Science and Treatment Recommendations process, managed by the International Liaison Committee on Resuscitation (http://www.americanheart. org/ILCOR). The questions were developed by ILCOR Task Forces, using strict conflict of interest guidelines. In general, each guestion was assigned to two experts to complete a detailed structured review of the literature, and complete a detailed worksheet. Worksheets are discussed at ILCOR meetings to reach consensus and will be published in 2010 as the Consensus on Science and Treatment Recommendations (CoSTR). The conclusions published in the final CoSTR consensus document may differ from the conclusions of in this review because the CoSTR consensus will reflect input from other worksheet authors and discussants at the conference, and will take into consideration implementation and feasibility issues as well as new relevant research.

Conflict of interest

JY, JS—none. GDP has published on CPR feedback devices (Q-CPR, Resusci-Anne Skill meter; CPR-Ezy). DE published on CPR feedback devices and has received research support from AHA and AHRQ, as well as research support, speaking honoraria and consulting from Philips.

Acknowledgements for funding

GDP receives support from the Department of Health National Institute of Health Research (DH NIHR) Clinician Scientist Scheme. This review has been supported in part by the DH NIHR and Research for Patient Benefit Programme.

References

- 1. Nichol G, Thomas E, Callaway CW, et al. Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA 2008;300:1423–31.
- Chan PS, Krumholz HM, Nichol G, Nallamothu BK. Delayed time to defibrillation after in-hospital cardiac arrest. N Engl J Med 2008;358:9–17.
- Hussellbee N, Davies RP, Perkins GD. Update on advanced life support. Br Med Bull 2009;89:79–91.
- 4. Nolan J, Soar J, Eikeland H. The chain of survival. Resuscitation 2006;71:270-1.
- Chamberlain DA, Hazinski MF. Education in resuscitation. Resuscitation 2003;59:11–43.
- Pytte M, Kramer-Johansen J, Eilevstjonn J, et al. Haemodynamic effects of adrenaline (epinephrine) depend on chest compression quality during cardiopulmonary resuscitation in pigs. Resuscitation 2006;71:369–78.
- Abella BS, Alvarado JP, Myklebust H, et al. Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. JAMA 2005;293:305–10.
- Wik L, Kramer-Johansen J, Myklebust H, et al. Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA 2005;293:299–304.

- 9. Perkins GD, Boyle W, Bridgestock H, et al. Quality of CPR during advanced resuscitation training. Resuscitation 2008;77:69–74.
- Leary M, Abella BS. The challenge of CPR quality: improvement in the real world. Resuscitation 2008;77:1–3.
- 11. Spooner BB, Fallaha JF, Kocierz L, Smith CM, Smith SC, Perkins GD. An evaluation of objective feedback in basic life support (BLS) training. Resuscitation 2007;73:417–24.
- Perkins GD, Lockey AS. Defibrillation-safety versus efficacy. Resuscitation 2008;79:1–3.
- Wik L, Thowsen J, Steen PA. An automated voice advisory manikin system for training in basic life support without an instructor. A novel approach to CPR training. Resuscitation 2001;50:167–72.
- Abella BS, Edelson DP, Kim S, et al. CPR quality improvement during in-hospital cardiac arrest using a real-time audiovisual feedback system. Resuscitation 2007;73:54–61.
- Monsieurs KG, De Regge M, Vogels C, Calle PA. Improved basic life support performance by ward nurses using the CAREvent Public Access Resuscitator (PAR) in a simulated setting. Resuscitation 2005;67:45–50.
- Boyle AJ, Wilson AM, Connelly K, McGuigan L, Wilson J, Whitbourn R. Improvement in timing and effectiveness of external cardiac compressions with a new non-invasive device: the CPR-Ezy. Resuscitation 2002;54:63–7.
- Elding C, Baskett P, Hughes A. The study of the effectiveness of chest compressions using the CPR-plus. Resuscitation 1998;36:169–73.
- Richardson WS, Wilson MC, Nishikawa J, Hayward RS. The well-built clinical question: a key to evidence-based decisions. ACP J Club 1995;123:A12–3.
- http://mc.manuscriptcentral.com/societyimages/ilcor/Defining%20Quality %20of%20Evidence.doc.
- Williamson LJ, Larsen PD, Tzeng YC, Galletly DC. Effect of automatic external defibrillator audio prompts on cardiopulmonary resuscitation performance. Emerg Med J 2005;22:140–3.
- Wik L, Myklebust H, Auestad BH, Steen PA. Retention of basic life support skills 6 months after training with an automated voice advisory manikin system without instructor involvement. Resuscitation 2002;52:273–9.
- Sutton RM, Donoghue A, Myklebust H, et al. The voice advisory manikin (VAM): an innovative approach to pediatric lay provider basic life support skill education. Resuscitation 2007;75:161–8.
- Isbye DL, Hoiby P, Rasmussen MB, et al. Voice advisory manikin versus instructor facilitated training in cardiopulmonary resuscitation. Resuscitation 2008;79:73–81.
- Lynch B, Einspruch EL, Nichol G, Becker LB, Aufderheide TP, Idris A. Effectiveness of a 30-min CPR self-instruction program for lay responders: a controlled randomized study. Resuscitation 2005;67:31–43.
- Beckers SK, Skorning MH, Fries M, et al. CPREzy improves performance of external chest compressions in simulated cardiac arrest. Resuscitation 2007;72:100–7.
- Choa M, Park I, Chung HS, Yoo SK, Shim H, Kim S. The effectiveness of cardiopulmonary resuscitation instruction: animation versus dispatcher through a cellular phone. Resuscitation 2008;77:87–94.
- Dine CJ, Gersh RE, Leary M, Riegel BJ, Bellini LM, Abella BS. Improving cardiopulmonary resuscitation quality and resuscitation training by combining audiovisual feedback and debriefing. Crit Care Med 2008;36:2817–22.
- Ertl L, Christ F. Significant improvement of the quality of bystander first aid using an expert system with a mobile multimedia device. Resuscitation 2007;74:286–95.
- Handley AJ, Handley SA. Improving CPR performance using an audible feedback system suitable for incorporation into an automated external defibrillator. Resuscitation 2003;57:57–62.
- Hostler D, Wang H, Parrish K, Platt TE, Guimond G. The effect of a voice assist manikin (VAM) system on CPR quality among prehospital providers. Prehosp Emerg Care 2005;9:53–60.
- Noordergraaf GJ, Drinkwaard BW, van Berkom PF, et al. The quality of chest compressions by trained personnel: the effect of feedback, via the CPREzy, in a randomized controlled trial using a manikin model. Resuscitation 2006;69:241–52.
- Oh JH, Lee SJ, Kim SE, Lee KJ, Choe JW, Kim CW. Effects of audio tone guidance on performance of CPR in simulated cardiac arrest with an advanced airway. Resuscitation 2008;79:273–7.
- Perkins GD, Augre C, Rogers H, Allan M, Thickett DR. CPREzy: an evaluation during simulated cardiac arrest on a hospital bed. Resuscitation 2005;64:103–8.
- Thomas SH, Stone CK, Austin PE, March JA, Brinkley S. Utilization of a pressuresensing monitor to improve in-flight chest compressions. Am J Emerg Med 1995;13:155–7.
- 35. Wik L, Kiil S. Use of an automatic mechanical chest compression device (LUCAS) as a bridge to establishing cardiopulmonary bypass for a patient with hypothermic cardiac arrest. Resuscitation 2005;66:391–4.
- Zanner R, Wilhelm D, Feussner H, Schneider G. Evaluation of M-AID[®], a first aid application for mobile phones. Resuscitation 2007;74:487–94.
- Wik L, Myklebust H, Auestad BH, Steen PA. Twelve-month retention of CPR skills with automatic correcting verbal feedback. Resuscitation 2005;66:27–30.
- Berg RA, Sanders AB, Milander M, Tellez D, Liu P, Beyda D. Efficacy of audio-prompted rate guidance in improving resuscitator performance of cardiopulmonary resuscitation on children. Acad Emerg Med 1994;1:35–40.
- Kern KB, Sanders AB, Raife J, Milander MM, Otto CW, Ewy GA. A study of chest compression rates during cardiopulmonary resuscitation in humans: the importance of rate-directed chest compressions. Arch Intern Med 1992;152: 145–9.

- Chiang WC, Chen WJ, Chen SY, et al. Better adherence to the guidelines during cardiopulmonary resuscitation through the provision of audio-prompts. Resuscitation 2005;64:297–301.
- Fletcher D, Galloway R, Chamberlain D, Pateman J, Bryant G, Newcombe RG. Basics in advanced life support: a role for download audit and metronomes. Resuscitation 2008;78:127–34.
- 42. Kramer-Johansen J, Myklebust H, Wik L, et al. Quality of out-of-hospital cardiopulmonary resuscitation with real time automated feedback: a prospective interventional study. Resuscitation 2006;71:283–92.
- Perkins GD, Kocierz L, Smith SC, McCulloch RA, Davies RP. Compression feedback devices over estimate chest compression depth when performed on a bed. Resuscitation 2009;80:79–82.
- 44. van Berkom PF, Noordergraaf GJ, Scheffer GJ, Noordergraaf A. Does use of the CPREzy involve more work than CPR without feedback? Resuscitation 2008;78:66–70.
- Milander MM, Hiscok PS, Sanders AB, Kern KB, Berg RA, Ewy GA. Chest compression and ventilation rates during cardiopulmonary resuscitation: the effects of audible tone guidance. Acad Emerg Med 1995;2:708–13.
- Gallagher EJ, Lombardi G, Gennis P. Effectiveness of bystander cardiopulmonary resuscitation and survival following out-of-hospital cardiac arrest. JAMA 1995;274:1922-5.
- 47. Van Hoeyweghen RJ, Bossaert LL, Mullie A, et al. Quality and efficiency of bystander CPR Belgian Cerebral Resuscitation Study Group. Resuscitation 1993;26:47–52.
- Edelson DP, Abella BS, Kramer-Johansen J, et al. Effects of compression depth and pre-shock pauses predict defibrillation failure during cardiac arrest. Resuscitation 2006;71:137–45.

- Abella BS, Sandbo N, Vassilatos P, et al. Chest compression rates during cardiopulmonary resuscitation are suboptimal: a prospective study during in-hospital cardiac arrest. Circulation 2005;111:428–34.
- 50. Halperin HR, Paradis N, Ornato JP, et al. Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest: improved hemodynamics and mechanisms. J Am Coll Cardiol 2004;44:2214–20.
- Cohen TJ, Tucker KJ, Lurie KG, et al. Active compression-decompression A new method of cardiopulmonary resuscitation. Cardiopulmonary Resuscitation Working Group. JAMA 1992;267:2916–23.
- Nolan J, Smith G, Evans R, et al. The United Kingdom pre-hospital study of active compression-decompression resuscitation. Resuscitation 1998;37: 119-25.
- 53. Hallstrom A, Rea TD, Sayre MR, et al. Manual chest compression vs use of an automated chest compression device during resuscitation following out-of-hospital cardiac arrest: a randomized trial. JAMA 2006;295: 2620–8.
- 54. Newgard CD, Sears GK, Rea TD, et al. The Resuscitation outcomes consortium epistry-trauma: design, development, and implementation of a North American epidemiologic prehospital trauma registry. Resuscitation 2008;78:170–8.
- Morrison LJ, Nichol G, Rea TD, et al. Rationale, development and implementation of the resuscitation outcomes consortium epistry-cardiac arrest. Resuscitation 2008;78:161–9.
- 56. France J, Wilson S, Whitton N. Emerg Med J 2006;23:160-1.