The new Resusci Anne QCPR sets a new standard for High Quality CPR training and provides the learners with the experience of practicing chest compressions with different chest stiffness’s.

Cardiac arrest victims are different and have different chest stiffness.
Clinical investigations have demonstrated that there is a strong non-linear relationship between the force of compression and sternal displacement achieved during chest compressions on cardiac arrest victims, and there is no relationship between different chest sizes and chest elasticity found. *(Tomlinson A.E. et.al. Compression force – depth relationship during out-of-hospital cardiopulmonary resuscitation Resuscitation 2007)*

The above clinical evidence confirm that the human chest stiffness varies significantly. Looking at the chest size of a cardiac arrest victim gives no clue on the individuals chest stiffness or the compression force required to obtain sufficient chest compression depth according to the CPR Guidelines.

The Resusci Anne QCPR training manikins allow for recording, documentation and evaluation of CPR performance with different chest stiffness’s. Practice with different chest stiffness’s should be included in CPR training programs using Resusci Anne QCPR.

Fig 1.: Compression depth vs. Chest elastic force. Each color line represents a sub section of adult out-of-hospital cardiac arrest patients. Data from King County EMS, (Seattle), WA, USA. The King County data confirm the similar data reported by A. E. Tomlinson in Resuscitation 2007.
To maximize this learning objective, Laerdal are providing two additional compression springs of different resistance with all Resusci Anne QCPR training manikins.

- Standard spring (Steel grey) = 45 Kg (Inserted)
- Soft spring (Yellow color) = 30 Kg (Enclosed)
- Hard springs (Blue color) = 60 Kg. Enclosed

The three compression springs represent the variable human chest stiffness of cardiac arrest patients, allowing the trainers to practice on different chest stiffness's.